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Abstract

The field of computer vision has witnessed tremendous
success in the past few years. Since the introduction of
AlexNet in 2012, the paradigm of supervised deep learn-
ing has significantly improved classical tasks like object
classification, semantic segmentation and object detection.
However, a neural network learner processes millions of
disconnected, manually annotated images or videos to dis-
cover the statistical association between patterns and la-
bels, while being completely oblivious to the physical body
and movement that generate those data. In this work, we
study how embodiment helps improve 3D representation
learning of an agent. We train a policy network for Point-
Goal navigation tasks in iGibson environments and design
a spectrum of 3D visual tasks to evaluate the learned skills
of the agent. Extensive experiment results show embodi-
ment helps the agent acquire sophisticated abilities by solv-
ing navigation tasks using deep reinforcement learning.

1. Introduction

Visual recognition has achieved tremendous success,
powered by a collection of large-scale curated datasets [3,
21, 2]. Despite the high scores on the leaderboards, mod-
ern computer vision systems are still a far cry from the
human vision system. Deep neural networks require mil-
lions of disconnected and manually annotated images, while
being oblivious to the physical world that generates those
data. A human toddler, however, is far more efficient in
mastering novel object concepts, navigating complex spa-
tial layouts, and learning sophisticated hand-eye coordina-
tion skills. A real-world robot, like a human toddler, ac-
tively obtains visual observations from the physical envi-
ronment. It can acquire sophisticated abilities by tackling
navigation [40, 11, 10] and recognition [16, 38] tasks via
deep reinforcement learning (RL). How such embodiment
affects the learned abilities of the agent is an open-ended
problem.

In this work, we take a step towards closing the gap
between AI and human intelligence by studying how em-
bodiment affects 3D representation learning. We use iGib-
son [36, 30], a simulation environment for robotic tasks in
large realistic scenes as a way of embodiment. More specif-
ically, we build a distributed RL framework and train a pol-
icy network for PointGoal tasks [1], where a mobile robot
(TurtleBot) is randomly spawned in an environment and it
needs to navigate to a specified goal location using RGB
visual signals. After we train the policy network, we fine-
tune and evaluate the convolutional encoder of the policy
network on different downstream tasks, including relative
camera pose estimation, depth estimation, surface normal
estimation, optical flow prediction and scene flow predic-
tion. All downstream tasks are 3D visual tasks, which are
specifically designed to evaluate the 3D representation of
the scene learned by the agent. An overview of our leaning
framework is shown in Figure 1.

2. Related Work

Representation Learning for Embodiment. Prior
work uses self-supervised learning techniques to improve
the performance of embodied learning. Image representa-
tion tasks leverage proxy tasks such as instance discrimi-
nation [33] and inpainting [25]. Video representation tasks
utilize contrastive predictions [15, 31] and temporal consis-
tency [35]. Reinforcement learning algorithms often suf-
fer from high variance and sample inefficiency and there-
fore prior work uses self-supervised learning techniques to
address these challenges. “curiosity” [24], an intrinsic re-
ward which uses the prediction-error between the learned
model and environment behavior, has been widely adopted
by a large family of approaches for training the agents. Re-
cent work also uses future prediction and implicit models to
learn state representations [12, 9]. A more recent work, en-
vironment predictive coding [27] learns environment-level
representations for embodied agents. Different from prior
work, our work mainly focuses on studying how embodi-
ment affects representation learning. Our main goal is not
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Figure 1: An overview of our learning framework. The first stage is embodied learning where we train an embodied agent
in an environment to solve a robotic task. The second stage is representation learning where we finetune the policy network
learned by the agent with a spectrum of downstream tasks. In this way, we will know how embodiment affects representation
learning.

to improve the performance of embodied learning, but in-
stead, we want to understand what skills are learned by the
embodied agent and how to evaluate the learned 3D repre-
sentations.

Multi-Task Learning. Prior work aims at developing
systems that can provide multiple outputs for an input in
one run [18, 4]. MTAN [22] proposes a multi-task learning
architecture, which allows learning of task-specific feature-
level attention. Their proposed method predicts semantic
segmentation, depth and surface normal at the same time.
Taskonomy [39] explicitly model the relations among tasks
and extract a meta-structure. They designed a spectrum of
downstream tasks for modeling the structure of space of
visual tasks. In this work, we do not do multi-task learn-
ing, but we do bear the multi-task setup in mind because
we want to finetune the encoder of our policy network for
different downstream tasks. Inspired by [17] which unifies
the tasks of instance segmentation (for thing classes) and
semantic segmentation (for stuff classes), we use Feature
Pyramid Network (FPN) as our backbone.

Deep Reinforcement Learning in Robotics. Deep RL
has been applied to mobile robot navigation [41] and robot
arm manipulation [19, 37]. There are both model-based and
model-free RL approaches that are widely used. Model-
based methods [19, 37] are sample efficient but do not gen-
eralize well due to their strong model assumptions. Model-
free methods [42] often require a large amount of data
but are more flexible. We specifically use Soft Actor-
Critic [13], a model-free method to tackle PointGoal navi-
gation tasks. We build a distributed and scalable RL frame-
work on top of SURREAL [7] and get very good results of
training embodied agents.

3. Approach
Given a policy network trained for the PointGoal navi-

gation task in a cluttered environment, where a robot needs
to navigate from an initial position to a target position and
avoid objects and obstacles in the environment, we extract
the visual encoder of the policy network and finetune it on
a spectrum of downstream tasks to see how embodiment af-
fects 3D representation learning of the agent by comparing
it with an encoder that is trained from scratch on the down-
stream tasks.

We expect that the finetuned encoder is better than the
encoder trained from scratch. In order for the agent to avoid
collisions and successfully navigate to the goal location, it
needs to understand many 3D concepts, e.g., which object is
closer, will any obstacle appear if following the current tra-
jectory, etc. Therefore, the navigation task will benefit the
agent in understanding the 3D environment and thus make it
obtain a good pretrained 3D representation, which is useful
for downstream finetuning.

3.1. Distributed RL Framework

Since iGibson training required GPU for both heavy
graphics simulation and neural network policy training, ex-
isting reinforcement RL libraries either did not scale well
or could not be easily customized. Therefore, we design
our own researcher-friendly, and highly scalable distributed
RL framework (Figure 2), that can be used to train many
agents in parallel. And it can scale to hundreds of CPUS
and dozens of GPUs. This is a major upgrade in speed and
customizability from SURREAL [7]. We adopt a data par-
allel paradigm. Every GPU runs multiple instances of iGib-
son simulators in parallel. Each GPU and each simulator
instance can actually run on different 3D scanned rooms
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Figure 2: Our distributed RL framework. We adopt a data parallel paradigm. Every GPU runs multiple instances of iGibson
simulators in parallel. Each GPU and each simulator instance can actually run on different 3D scanned rooms with different
furnitures.

with different furnitures. Each agent collects experience in
parallel and the learning takes place in a synchronized data
parallel fashion. We have a parameter server that can peri-
odically pushes the latest parameters to a bunch of evalua-
tion agents, which evaluate the performance in real time.

3.2. Policy Network

The foundation of RL is Markov Decision Process [32],
defined as the tuple (S,A, P, γ). The components are states
s ∈ S = Rn, actions a ∈ A, and state transition probabil-
ity function, P = P (st+1, rt|st, at). An RL agent seeks to
maximize the expected reward, R =

∑∞
t=0 γ

trt with dis-
count factor γ ∈ [0, 1). In this work, we mainly consider
continuous control tasks from raw pixels. The agent re-
ceives a high-dimensional image observation ot = O(st) ∈
Rk, an indirect representation of the state, and outputs a
continuous action A ∈ Rm.

In this work, we use Soft Actor-Critic (SAC) as our
policy network. SAC [13, 14] is a state-of-the-art off-
policy RL algorithm for continuous control. SAC learns
a policy π(a|o) and a critic Q(o, a) that maximize a
weighted objective of expected reward and policy entropy,
Est,at∼π [

∑
t rt + αH(π(·|ot))]. SAC stores experiences

into a replay buffer D. The critic parameters are updated
by minimizing the Bellman error using transitions sampled

from D:

LQ = Eτ∼D
[(
Q(ot, at)− (rt + γV (ot+1))

)2]
. (1)

The target value of next state is estimated by sampling an
action under the current policy:

V (ot+1) = Ea′∼π
[
Q̃(ot+1, a

′)− α log π(a′|ot+1)
]
, (2)

where Q̃ denotes an exponential moving average of the
critic parameters. The policy is learned by minimizing the
divergence from the exponential of the soft-Q function:

Lπ = −Ea∼π [Q(ot, a)− α log π(a|ot)] , (3)

where α is a learnable temperature parameter that controls
the stochasticity of the optimal policy.

3.3. Visual Encoder

In the PointGoal navigation task, observations of the
agent include RGB visual signals, the robot’s linear and an-
gular velocities, the goal location in the robot’s reference
frame, and the next 10 waypoint locations following the
shortest path between the robot’s current location and the
goal location. We concatenate all signals except for the
RGB signals and denote them by sensor signals. We use
a frame stack of 4 for both RGB and sensor signals.
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Figure 3: We adopt FPN as our backbone. The bottom-up pathway is the feedforward computation of the pretrained visual
encoder. The top-down pathway hallucinates higher resolution features/outputs.

The encoder of the policy network consists of a 9-layer
ResNet with Weight Standardization [26] and GroupNorm,
followed by a 3-layer Conv1D block to encode RGB sig-
nals; a 2-layer MLP to encode sensor signals; a 2-layer fu-
sion MLP to encode the concatenation of RGB embedding
and sensor embedding.

3.4. Embodied Learning

The first stage is embodied learning, or pretraining,
where we train the policy network for the PointGoal nav-
igation task using SAC with the visual encoder introduced
in Section 3.3. The task is successful if the robot gets closer
than 0.36 m to the goal location, which is the size of the
robot. The reward is shaped by the geodesic distance to the
goal and has a collision penalty [28]. More specifically, the
robot gets a positive reward if it gets closer to the target and
a negative reward if it moves further away from the goal
location. A one-time large and positive success reward is
given if the task is successful. After the first stage, we only
keep the visual encoder and remove all other components of
the policy network.

3.5. Downstream Evaluation

The second stage is downstream evaluation, or finetun-
ing the pretrained visual encoder on different downstream
tasks.

For relative camera pose estimation, the input is a pair
of RGB images. We use a siamese network by cloning the
visual encoder and then concatenate the embeddings of the
pair images from the siamese network and use an MLP layer
to infer the relative camera pose. The loss function is the

cross-entropy loss between the ground truth and the pre-
dicted relative camera pose.

For depth estimation and surface normal estimation, the
input is an RGB image and the output is either a depth map
or surface normal. This is an image generation task and
we adopt the Feature Pyramid Network (FPN) [20] as our
backbone. The bottom-up pathway is the feedforward com-
putation of the pretrained visual encoder. The top-down
pathway hallucinates higher resolution features and outputs
either a depth map or surface normal. The network archi-
tecture is shown in Figure 3. We use L1 loss for depth es-
timation and cosine similarity loss for surface normal esti-
mation.

For optical flow and scene flow estimation, we still use
the FPN backbone. However, since the input is a video clip,
we add a few Conv3D layers with a kernel size of 3×1×1 to
aggregate the image frames. We use L1 loss for both optical
flow and scene flow estimation.

4. Experiment
4.1. Downstream Tasks

Relative Camera Pose Estimation. Following Taskon-
omy [39], for two different views with the same optical
centers, we want to estimate the 6-DOF relative camera
pose, including xyz translation and yaw, pitch, roll. Dif-
ferent from [39], we formulate this problem as a classifica-
tion task, in which we need to collect a dataset composed of
paired images with different camera poses. For the first im-
age in pairs, we render it from a scene with a random pose;
for the second image, we render it with {+0.3m,−0.3m} of
relative xyz translation and {+15◦,−15◦} of relative yaw,
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pitch, roll. There are 26 = 64 categories in this task. Top-1
accuracy is used as the main metric for this task.

Depth Estimation. Estimating depth is very impor-
tant for an agent to understand geometric relations within
a scene. Such relations are essential to many recognition
tasks and have rich applications in robotics, scene under-
standing and 3-D reconstruction [29]. We utilize the depth
map rendered by iGibson and perform depth estimation.
The raw depth values are clipped between 0m and 0.5m and
normalized by 0.5m. We use absolute relative difference [6]
as the main metric, which is scale-invariant.

Surface Normal Estimation. Surface normal is another
modality that describes physical geometry and facilitate 3-
D scene understanding. It is an indicator of where an object
could be placed and helps understand the relation between
objects and the environment. The main metric for this task
is the mean angle distance on a per-pixel-basis [8].

Optical Flow Prediction. Optical flow captures the mo-
tion of objects and surfaces in a scene. Understanding op-
tical flow helps an agent predicts the dynamics of a phys-
ical world. Given a video clip of 4 RGB frames as input,
we would like to predict the optical flow between the 4th
frame and 5th frame. The unit of optical flow rendered by
iGibson is normalized device coordinate (NDC), which is
in [−1, 1]× [−1, 1]. The raw optical flow values are clipped
between −1 and 1. As per [5], the metric for this task is
end-point error (EPE).

Scene Flow Prediction. Scene flow is the 3D motion
field of points in a scene [34], while optical flow is its
projection into an image plane. Scene flow provides mo-
tion cues for many tasks including object segmentation, ac-
tion recognition, camera pose estimation, etc [23]. Given
a video clip of 4 RGB frames as input, we would like to
predict the scene flow between the 4th frame and 5th frame.
The unit of scene flow is meter, The raw scene flow values
are clipped between −1m and 1m. We use 3D EPE as the
main metric, following [23].

4.2. Downstream Datasets

We use iGibson to generate 3 datasets for downstream
evaluation. The details are shown in Table 1. Note that
we generate depth maps and surface normals at the same
time. Similarly, optical flow and scene flow are generated
simultaneously.

4.3. Embodied Learning Results

We render RGB signals with a resolution of 224 × 224.
We train our policy network with 1M steps across 16 dif-
ferent scenes. The learning rate for SAC is 1e-4. Success
weighted by (normalized inverse) Path Length (SPL) is a
common metric used to measure the agent’s navigation per-

Table 1: Statistics for different types of datasets.

Task(s) Training size Validation size

relative camera pose 40960 20480

depth estimation 40000 20000surface normal estimation

optical flow prediction 12000 4000scene flow prediction

formance, which is defined as

1

N

n∑
i=1

Si
li

max(pi, li)
. (4)

N is the number of test episodes. li is the shortest path dis-
tance from the agent’s initial position to the goal in episode
i. pi is the length of the path actually taken by the agent in
this episode. Si is a binary indicator of success in episode
i. We evaluate 20 episodes for each scene and our SPL av-
eraged over all 16 scenes is 0.597. A breakdown of all 16
scenes is shown in Table 2. For qualitative results of Point-
Goal navigation, please see supplementary material.

Table 2: Quantitative results on PointGoal navigation.

scene01 scene02 scene03 scene04
0.558 0.458 0.510 0.662

scene05 scene06 scene07 scene08
0.755 0.647 0.750 0.837

scene09 scene10 scene11 scene12
0.428 0.442 0.740 0.812

scene13 scene14 scene15 scene16
0.671 0.055 0.481 0.746

4.4. 3D Representation Learning Results

After the embodied learning stage, we come to 3D repre-
sentation learning, where we use a spectrum of downstream
tasks to evaluate the learned skills of the agent. Table 3
shows the results of downstream evaluation. For each task,
we compared our approach (embodiment for representation
learning) with training from scratch. We highlight the bet-
ter approach using the green color. Our approach is better
than training-from-scratch on 4 tasks. This is because un-
derstanding depth and surface normal and predicting opti-
cal flow and scene flow are quite important for the agent to
avoid objects and obstacles. The camera pose, however, is
not that important during navigation. We also show qual-
itative results of downstream evaluation from Figure 4 to
Figure 8. The model learns quite good 3D representations
of the scene.
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Table 3: Quantitative results on downstream evaluation.

Task Evaluation Metric Training from Scratch Embodiment for Representation Learning

relative camera pose estimation top-1 accuracy 10.9% 9.8%

depth estimation relative difference 0.344 0.322

surface normal estimation mean angle distance 35.9 35.2

optical flow prediction end-point error 0.211 0.138

scene flow prediction 3D end-point error 0.247 0.217

Figure 4: Relative camera pose estimation task. 010100 means relative x translation is −0.3m, relative y translation is 0.3m,
relative z translation is −0.3m, yaw is +15◦, pitch is −15◦ and roll is −15◦. Each row corresponds to a specific relative
camera pose and contains 4 pairs of RGB images.

Figure 5: Depth estimation task. For each triplet of images, the left one is RGB input, the middle one is the ground truth of
depth output, and the right one is the predicted depth output.
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Figure 6: Surface normal estimation task. For each triplet of images, the left one is RGB input, the middle one is the ground
truth of surface normal, and the right one is the predicted surface normal.

Figure 7: Optical flow prediction task. In each row, the first four images are the input video clip. The optical flow is the
output and obtained from the 4th image (column) and the 5th image (column). The 6th image (column) is the ground truth
of the optical flow, while the last column is the predicted optical flow.
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Figure 8: Scene flow prediction task. In each row, the first four images are the input video clip. The optical flow is the output
and obtained from the 4th image (column) and the 5th image (column). The 6th image (column) is the ground truth of the
scene flow, while the last column is the predicted scene flow.

5. Conclusion
In this work, we take a step towards closing the gap be-

tween AI and human intelligence by studying how embod-
iment affects 3D representation learning. We build a dis-
tributed RL framework and train a policy network for Point-
Goal navigation tasks. After that, we finetune the encoder
on different downstream tasks to evaluate 3D representa-
tions of the scene learned by the agent. We show that em-
bodiment helps the agent acquire sophisticated abilities by
solving navigation tasks using deep RL. Another thing that
is worth trying (suggested by Kuan Fang) is to use the es-
timated depth as the input to the policy network and see
whether it improves the performance of embodied learning.
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